Matthew Yacavone

<u>yacavone.net</u> | <u>matthew@yacavone.net</u> | <u>github.com/m-yac</u> Brooklyn, NY | 973-330-6645

Experience

Software Engineer / Researcher

2020-2024 | Galois, Inc.

Created, developed, and maintained powerful tools for formal verification.

- Was a core <u>contributor</u> to <u>SAW (Software Analysis Workbench)</u>, a large, decade-old suite of formal verification tools in active use as part of critical systems in US government and commercial clients.
 - Primarily designed, implemented, and maintained <u>Coq</u> automation for <u>Heapster</u>, a tool within <u>SAW</u> for analyzing unbounded programs. Spearheaded the development of its successor in <u>SAW</u>, <u>Mr. Solver</u>.
 - . Co-authored two papers (publications [1], [3]) on *Heapster*, both of which use and rely on my automation for their core results.
 - . Verified, with a colleague, the correctness of a software update mechanism developed for a DoD client using *Heapster's Coq* automation. Verified the top-level interface of <u>Dilithum</u>, a NISTstandard post-quantum signature scheme, with *Mr. Solver*.
- Audited a large Python codebase implementing <u>differential privacy</u> for a government client, resulting in authoring a 21-page document detailing the mathematical probability of two key algorithms failing. Updated their codebase to precisely predict and account for this.
- Co-designed a domain-specific programming language for <u>feature</u> modeling. Implemented the lexer, parser, type checker, and CLI.
- Lead the company's "Blue Sky Time" program, hosting twice-yearly sharing sessions and acting as a friendly face encouraging use of the program through periodic announcement and one-on-one meetings.

Research in Knot Theory

2019-2022 | Haverford College

Developed and proved a novel result in Legendrian Knot Theory in collaboration with my former professor <u>Joshua Sabloff</u>. Co-authored and published a paper (publication [2]) in a major knot theory journal.

 Designed an interactive user interface in Python for exploring and collecting data on Legendrian knots, used to develop our result.

Education

B.S. Mathematics from Haverford College, 2019

Included two semesters of graduate studies in mathematics at the University of Pennsylvania. Minor in Computer Science.

Skills and Interests

Languages: Haskell, Python, Coq, Agda, Rust, Javascript, HTML/CSS

Design: Lighting designer for eight student-run musicals and plays over five years in high school and college. Created interactive visualizations for <u>linguistics</u>, <u>judaism</u>, <u>music</u>, and more.

Music Theory: Created <u>xen-calc</u>, a tool for making <u>microtonal</u> music

Life: Twisty puzzles, Baritone ukulele

Publications

- [3] Silver, L., Westbrook, E., Yacavone, M., & Scott, R. (2023). Interaction Tree Specifications: A Framework for Specifying Recursive, Effectful Computations That Supports Auto-Active Verification. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). [PDF]
- [2] Guadagni, R., Sabloff, J. M., & Yacavone, M. (2022). Legendrian satellites and decomposable cobordisms. Journal of Knot Theory and Its Ramifications, 31 (13), Article 2250071. [PDF]
- [1] He, P., Westbrook, E., Carmer, B., Phifer, C., Robert, V., Smeltzer, K., Ştefănescu, A., Tomb, A., Yacavone, M., & Zdancewic, S. (2021). A type system for extracting functional specifications from memory-safe imperative programs. Proceedings of the ACM on Programming Languages, 5 (OOPSLA), Article 135, 1-29. [PDF]